欢迎光临正规赌钱软件【真.AG平台】!

服务热线: 1891789566
当前位置:首页 > 新闻动态 > 行业新闻 >

电子工业用超纯水设备项目解决方案

发表时间:2020-05-18 00:33

  要求产品水量为50T/h,因此设计产水量确定为50 T/h。超纯水系统采用两级反渗透装置的系统回收率为75%。

  本超纯水设备系统的进水为当地深井水,其水质经当地环保部门进行了全水质分析,主要检测分析结果见水质报告。

  根据产品水的用途与要求,确定超纯水设备产水的目标水质为:电阻率≥10MΩ·cm

  电子用纯水不同于一般的纯水制备,它对水质具有更为严格的规定,属于超纯水范围。一般来说,超纯水制备主要包括预脱盐与精处理两大部分,如何进行工艺的选择和组合成为超纯水制备的关键。

  水质标准:(水质符合美国ASTM标准,电子部超纯水水质标准(18MΩ*cm,15MΩ*cm,2MΩ*cm和0.5MΩ*cm四级)

  1.预处理-反渗透- 水箱-阳床-阴床-混合床-纯化水箱-纯水泵-紫外线杀菌器-精制混床-精密过滤器-用水对象

  2.预处理-一级反渗透-加药机(PH调节)-中间水箱-第二级反渗透(正电荷反渗膜)-纯化水箱-纯水泵-紫外线;m精密过滤器-用水对象

  3.预处理-反渗透-中间水箱-水泵-EDI装置-纯化水箱-纯水泵-紫外线;m精密过滤器-用水对象

  4.预处理-反渗透-中间水箱-水泵-EDI装置-纯化水箱-纯水泵-紫外线;m精密过滤器-用水对象

  目前,预脱盐处理常常采用的主要是离子交换工艺和反渗透工艺。离子交换已被广泛使用许多年,我国八、九十年代初的纯水制备工艺基本上都采用离子交换法,该工艺技术成熟,工艺可靠,而且可根据目标水质的要求进行多种离子交换方式的组合。随着科技和自动化技术的发展,离子交换再生频繁、操作复杂、维护麻烦、运行费用高等缺陷就越来越突出,九十年代逐渐被新的反渗透技术代替,特别是预脱盐目前基本上都采用反渗透技术。和离子交换相比,反渗透具有运行稳定、占地少、操作维护简单、可实现高度自控,处理水量越大,其优势就越明显。

  预脱盐后续的精脱盐处理工艺则根据目标水质的要求而有所不同,对超高纯水(电阻率大于16 MΩ·cm),目前一般采用更先进的EDI技术;对电阻率低于16MΩ·cm的纯水,目前仍采用经济可靠的混合床技术。因为对纯水的精脱盐,混床又显示出其独有的优势:脱盐稳定,效率高,再生周期长,操作维护少。

  鉴于以上的分析,结合项目的现实情况,在综合技术因素、经济因素的前提下,确定本超纯水工程采用以反渗透为主体工艺,混床作为精处理工艺。

  本超纯水设备系统原水采用深井水,水温在15℃左右,对于反渗透系统不是最佳温度。反渗透系统的最理想的温度为20℃左右,如果要保证20℃的温度,必须对原水采用加温措施,加温的方式可以选用电加热或蒸汽换热,对于小水量系统比较可行,但是对于较大水量系统,能耗偏高。其付出与升温带来的益处相比,反而不具有经济性。温度的升高虽然有利于提高反渗透系统的回收率,但是在本系统设计中对于反渗透系统的回收率具有一定的余度,因此无需加温仍完全可以满足系统要求。同时,升温过程的控制和操作也比较复杂。因此,本系统不考虑采用原水升温措施,只在反渗透系统中考虑水温影响,进行修正。

  原水经泵提升依次经过组合过滤器、投加阻垢剂和保安过滤器等预处理工段,用以去除原中水的悬浮固体、胶体、有机物,并降低原水的浊度、色度等,保证RO进水SDI3,以提供合格的反渗透进水。保安过滤器出水经高压泵提升进入反渗透装置,反渗透出水进入中间水箱,反渗透部分设有在线PH调节装置。为保证反渗透装置长期稳定运行,设置反渗透清洗装置,视需要对反渗透膜进行清洗。中间水箱出水经纯水泵提升至混床除盐系统,利用离子交换原理进一步脱盐,处理后产出的合格水流经微孔过滤器至纯水箱处,再经供水泵提升,经过紫外线消毒装置杀灭细菌后进入超纯水用水点。

  值得注意的是,本超纯水设备系统一次性按照产品水量为50T/h进行设计,考虑到实际生产中可能会在初期生产的1-2年内不需要如此大的水量,需水量可能在60%-70%左右,因此在系统配置中控制泵的选型匹配,在不同产水量的要求下,启动不同台数的水泵,达到系统对产水量的需求。

  科瑞超纯水设备优势请点击:CARRYCLEAN科瑞超纯水设备系统设计优势

  反渗透系统长期稳定运行的关键在于预处理,预处理的好坏不仅决定着反渗透装置的清洗次数,而且决定着反渗透膜元件的使用寿命。预处理部分主要解决以下问题:

  超纯水设备系统预处理部分主要包括:原水箱、提升泵、组合过滤器、保安过滤器、阻垢剂投加装置、调pH装置。

  原水箱的有效容积V=30m3,尺寸:Φ3100×4200mm,材质:PE,箱内配置浮球阀1个,到达预定液位时自动停止进水。为尽量避免细菌污染,水箱采用封闭形式,并在通空气处设有呼吸器,过滤净化空气。

  原水箱的出水经泵提升至后续处理单元—组合过滤器。设计提升泵3台(2用1备),单台能力为Q=40m3/h,H=24.5m,N=5.5kw。

  组合过滤作为预处理的第一步,主要用以去除胶体物质、悬浮物固体颗粒、泥沙、部分大分子有机物质及微生物。

  超纯水设备系统组合过滤器采用石英砂与颗粒活性炭共同混合作为滤料,通过过滤截留与吸附作用不仅可以达到上述目的,对于铁、锰等也具有较好的去除效果。活性炭的使用,可以有效预防地下水受到污染后水质变化的影响,同时可以改善处理水的水质条件,对反渗透和离子交换系统的稳定运行非常有利。其主要特点有:

  设计选用组合过滤器2台,规格为Ф2400×3000, 互为备用,罐体采用碳钢材质,内衬胶,滤料为精选石英砂与颗粒活性炭。反冲洗利用原水直接进行,采用水反冲洗,配备水泵1台,单台能力为Q=139m3/h,H=24m,N=15kw。

  为防止RO膜元件在选择透过淡化水的同时,其浓水侧溶解固形物浓缩出现因浓度极大与溶解度平衡常数而结晶析出,在RO膜表面结垢,影响RO膜的脱盐率、水通量、运行压力等性能参数。如果出现细小晶粒而不能及时处理的话,溶解固形物会以其为结晶核心,使结晶粒增大,从而其结晶棱角会刺破膜表面,损坏反渗透装置,因而在反渗透装置前设置PTP-2000阻垢剂加药装置。

  PTP-2000阻垢剂,能够有效地控制无机盐类结垢并特别针对硅酸盐的结构,完全将硅的溶解度降在安全现以下(64%),可以有效控制LSI指数控制在2.5以内,使膜的寿命延长而降低成本。从量的角度来看,可以控制240ppm的浓水硅含量,从功能上看,具有以下几个功能:

  a.有效控制无机盐类结垢并特别针对硅酸盐在浓缩液中高大240ppm还不致结垢;

  通过阻垢剂投加计算,阻垢剂的投加量为2.9ppm,考虑到设计的安全余量,设计投加量确定为3.5ppm,具体投加量由现场调试决定。为了增加加药的混合效果,在加药点设置静态混合器一台,以使阻垢剂和原水充分混合,满足阻垢机阻垢机理以及充分发挥所加药剂的性能。设计采用阻垢剂投加装置一套,药箱的容积为0.15m3,计量泵采用进口计量泵,最大加药量为0.9L/h。

  根据计算,36%盐酸最大投加量为25ppm,配套在线pH计,控制pH的调节。

  设计采用调pH装置一套,药箱的容积为0.15m3,计量泵采用进口计量泵,最大加药量为1.2L/h

  为进一步改善反渗透进水的物化指标,确保反渗透工艺稳定运行,在组合过滤器之后,设计采用保安过滤作为最终的预处理手段,使RO进入浊度低于1的水平,SDI3。本工程设计采用保安过滤器1台,处理能力Q=60-80m3/h,规格为Ф600×2111mm,滤芯材质:聚丙烯,过滤精度:5μm,滤芯数量:51根。

  在正常工作情况下,滤芯可以维持7-8个月以上,当进出口压力差达到1kg/cm2时进行更换,以便能在清洗滤芯时达到满意的恢复效果,减低运行成本,滤器的结构满足快速更换滤芯的要求。

  反渗透是超纯水设备系统预脱盐的核心部分,设计的成熟、合理与否不仅直接决定系统能否达到设计要求,而且关系到反渗透装置的使用寿命。本系统设计反渗透产水量为50m3/h。

  反渗透膜元件对水中的离子具有选择透过性,因而在反渗透浓水侧和产水侧存在着渗透压差,这样就必须要有外界的压力来克服渗透压差才能够使反渗透装置正常工作并达到设计要求,外界的压力通过高压泵来提供。根据设计计算,采用立式多级离心高压泵2台(2用0备),具有运行压力稳定,噪音小,使用寿命长等特点。高压泵单台能力Q=40 m3/h,H=15bar,N=30kw。

  反渗透装置的预处理设计越趋于完善,膜元件清洗的次数就可以减少,但是完全保证膜元件不被污染是不可能的,当系统出现压力升高,产水量降低,脱盐率下降等特征时,就必须考虑对反渗透膜的化学清洗,首先应判断发生污染的性质和位置,然后采用相应配套的化学药剂溶液通过每段反渗透组件留有的清洗接口进行清洗。

  清洗装置由清洗泵、清洗箱以及相关的流量计、压力表、阀门、管路系统等。一般当系统压力上升15%以上时,需要进行化学清洗,一般4-6个月清洗一次。化学清洗装置溶药箱容积为2m3,清洗泵1台,能力为40m3/h,H=34m,N=5.5kw,配套精密过滤器1台,处理能力Q=40m3/h,规格为Ф500×1757mm,滤芯材质:聚丙烯,过滤精度:5μm,滤芯数量:36根